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Part I

1. Write a code using the programming language of your interest (preferably Python, C++, or
MATLAB) that takes a positive scalar λ as input, and returns one sample of an exponential
random variable X with parameter λ (i.e., X ∼ Exp(λ)). You can only use the RAND
function (or its equivalent) that generates a random number in the interval [0,1].

# Generate one sample of an exponential random variable with

# parameter y >= 0.

def sample(y):

if y < 0:

raise ValueError(

"sample: parameter of an exponential distribution must be positive"

)

# Returns a sample of R~Unif [0,1].

r = random.random ()

# Generate sample using inverse of exponential CDF.

return -1 / y * math.log(1 - r)

2. Write a code that takes a positive integer n and a postive scalar λ as input, and generates n
independent samples of X ∼ Exp(λ). You can use the function you have defined for problem
1 as part of the code for this problem.

# Generate a list of n samples of an exponential random

# variable with parameter y >= 0.

def n_samples(y, n):

return np.array([ sample(y) for _ in range(n)])

3. Write a code that takes n independent samples of a random variable X as input, and returns
an approximation of the CDF of X.

# Approximate the CDF of an exponential random variable

# using random samples and a set of x values.

def approximate_cdf(samples , xs):

n = len(samples)

# Estimate P(t<=a) for all t in samples and a in xs by

# finding the fraction of ts less than each a.

result = []

for x in xs:

s = 0

for sample in samples:

if sample <= x:

s += 1

result.append(s / n)

return np.array(result)

4. Using your code from problem 2, generate two sets of samples of X ∼ Exp( 1
2 ), one for

n = 100 and the other for n = 5000; and for each set of samples, compute an approximation
of the CDF of X using your code for problem 3 (when xmin = 0, xmax = 15, and ∆ = 0.01).

1



5. Using the samples generated for both n = 100 and n = 5000, compute the sample mean x̄
and the sample variance s2, where x̄ = 1

n

∑n
i=1 xi and s2 = 1

n−1

∑n
i=1(xi − x̄)2.

n=100

x̄ = 1.77 Difference from E[X]: 11.4%

s2 = 3.49 Difference from Var[X]: 12.8%

n=5000

x̄ = 2.01 Difference from E[X]: 0.734%

s2 = 3.99 Difference from Var[X]: 0.0891%
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Part II

6. Write a code that takes a positive scalar µ, and generates one sample of a Poisson random
variable M with parameter µ. Use the function you wrote for problem 1 in part I.

# Generate one sample of a Poisson random variable with

# parameter u >= 0.

def sample(u):

if u < 0:

raise ValueError("sample: parameter of a Poisson distribution must be

positive")

# Sum independent samples of Y~Exp(1) until reaching u,

# counting the m samples taken.

s = m = 0

y = exponential.sample (1)

while True:

s += y

if s > u:

break

m += 1

y = exponential.sample (1)

return m

7. Using your code from problem 6, generate 5000 independent samples of M ∼ Po(5), and
compute the sample mean and the sample variance using the generated samples.

x̄ = 4.99 Difference from E[M ]: 0.132%

s2 = 5.02 Difference from Var[M ]: 0.495%

3



Part III

8. Write a code to generate 1,000,000 independent samples of T . You can use the functions you
wrote for the problems in parts I and II.

NUM_SAMPLES = 1_000_000

ts = []

# Generate NUM_SAMPLES samples of random variable T.

for _ in range(NUM_SAMPLES):

n = poisson.sample (5)

m = t = 0

count_ms_gte_1 = 0

for _ in range(n):

m = poisson.sample (2)

# Count ms >=1. Later , if this count == n,

# then for this sample all ms >=1.

if m >= 1:

count_ms_gte_1 += 1

for _ in range(m):

t += exponential.sample (0.5)

ts.append(t)

9. Compute an estimate of the probability of each of the following events, by computing the
fraction of times (out of 1,000,000 generated samples) that the event of interest has occured:

(i) The event that T is no more than 20 minutes.

Pr(T ≤ 20) ≈ 0.56

(ii) The event that T is more than 20 minutes given that Jane goes to the bank at least 5
times during a month.

Pr(T ≥ 20|N ≥ 5) ≈ 0.66

(iii) The event that T is more than 20 minutes given that each time there is at least 1 customer
ahead of Jane.

Pr(T ≥ 20|min (M1,M2, . . . ,MN ) ≥ 1) ≈ 0.44

(iv) The event that T is more than 20 minutes given that Jane goes to the bank at least 5
times during a month and each time there is at least 1 customer ahead of her.

Pr(T ≥ 20|N ≥ 5,min (M1,M2, . . . ,MN ) ≥ 1) ≈ 0.76

10. Compute the sample mean and the sample variance of T .

x̄ = 19.99 s2 = 159.7

Multiple runs of the simulation strongly suggest that

E[T ] = 20

Var[T ] = 160
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To confirm,

E[T ] = E[

N∑
i=1

Mi∑
j=1

Xj ]

= E[E[

N∑
i=1

Mi∑
j=1

Xj |N ]] (LTE)

= E[

n∑
i=1

E[

Mi∑
j=1

Xj ] (N is independent of M and X)

= E[

n∑
i=1

E[E[

Mi∑
j=1

Xj |Mi]]]

= E[

n∑
i=1

E[

mi∑
j=1

Xj ]] (All Mi are independent of X and each other)

= E[

n∑
i=1

2M ]

= E[2NM ]

= 20

Similarly,

Var[T ] = Var[

N∑
i=1

Mi∑
j=1

Xk]

= E[Var[

N∑
i=1

Mi∑
j=1

Xk|N ] + Var[E[

N∑
i=1

Mi∑
j=1

Xk|N ]] (LTV)

Var[

N∑
i=1

Mi∑
j=1

Xk|N ] =

n∑
i=1

Var[

Mi∑
j=1

Xk]

=

n∑
i=1

{E[Var[

Mi∑
j=1

Xj |Mi]] + Var[E[

Mi∑
j=1

Xj |Mi]]}

=

n∑
i=1

{E[4M ] + Var[2M ]}

=

n∑
i=1

{4E[M ] + 4Var[M ]}

= 16N

E[

N∑
i=1

Mi∑
j=1

Xk|N ] =

n∑
i=1

E[

Mi∑
j=1

Xj ]

=

n∑
i=1

E[E[

Mi∑
j=1

Xj |Mi]]

=

n∑
i=1

E[2M ]

= 4N

∴ Var[T ] = E[16N ] + Var[4N ]
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= 16E[N ] + 16Var[N ]

= 160
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Appendices

Listings

1 exponential.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 poisson.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 part3.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

#!/usr/bin/env python

import math

import random

import matplotlib.pyplot as plt

import numpy as np

# Generate one sample of an exponential random variable with

# parameter y >= 0.

def sample(y):

if y < 0:

raise ValueError(

"sample: parameter of an exponential distribution must be positive"

)

# Returns a sample of R~Unif [0,1].

r = random.random ()

# Generate sample using inverse of exponential CDF.

return -1 / y * math.log(1 - r)

# Generate a list of n samples of an exponential random

# variable with parameter y >= 0.

def n_samples(y, n):

return np.array([ sample(y) for _ in range(n)])

# Approximate the CDF of an exponential random variable

# using random samples and a set of x values.

def approximate_cdf(samples , xs):

n = len(samples)

# Estimate P(t<=a) for all t in samples and a in xs by

# finding the fraction of ts less than each a.

result = []

for x in xs:

s = 0

for sample in samples:

if sample <= x:

s += 1

result.append(s / n)

return np.array(result)

# Compute the mean of samples.

def mean(samples):

n = s = 0

for x in samples:

s += x

n += 1

return s / n

# Compute the variance of samples.

def var(samples):

m = mean(samples)

n = s = 0

for x in samples:

s += (x - m) ** 2

n += 1

return s / (n - 1)
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if __name__ == "__main__":

# Seed the random generator (system time is used by default).

random.seed()

# Generate two sample sets of n=100 and n=5000 with parameter 0.5.

y = 0.5

samples100 = n_samples(y, 100)

samples5000 = n_samples(y, 5000)

# Generate 1500 x values between 0 and 15 to plot

# against the sample sets.

xs = np.linspace(0, 15, num =1500)

# Generate a graph of the approximate CDF of an

# exponential random variable for values between 0 and

# 15; one using samples100 , another using samples5000 ,

# and finally the actual cdf.

fig , ax = plt.subplots ()

ax.set_title("CDF of X~Exp (0.5)")

ax.set_xlabel("X")

ax.set_ylabel("F(x)")

ax.plot(xs, approximate_cdf(samples100 , xs), label="N=100")

ax.plot(xs, approximate_cdf(samples5000 , xs), label="N=5000")

ax.plot(xs, np.array ([1 - math.exp(-y * x) for x in xs]), label="1 - exp(-x/2)")

ax.legend ()

plt.savefig("cdf.png")

# Compute and display the mean and variance , and the percent

# difference from expected values , of both sample sets.

u1 = mean(samples100)

s1 = var(samples100)

u2 = mean(samples5000)

s2 = var(samples5000)

print("n=100:")

print("mean = ", format(u1, "g"))

print("% diff =", format(abs(u1 - 2) / 2 * 100, "g"))

print("variance =", format(s1, "g"))

print("% diff =", format(abs(s1 - 4) / 4 * 100, "g"))

print()

print("n=5000:")

print("mean =", format(u2 , "g"))

print("% diff =", format(abs(u2 - 2) / 2 * 100, "g"))

print("variance =", format(s2, "g"))

print("% diff =", format(abs(s2 - 4) / 4 * 100, "g"))

Listing 1: exponential.py
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#!/usr/bin/env python

import math

import random

import numpy as np

import exponential

# Generate one sample of a Poisson random variable with

# parameter u >= 0.

def sample(u):

if u < 0:

raise ValueError("sample: parameter of a Poisson distribution must be

positive")

# Sum independent samples of Y~Exp(1) until reaching u,

# counting the m samples taken.

s = m = 0

y = exponential.sample (1)

while True:

s += y

if s > u:

break

m += 1

y = exponential.sample (1)

return m

# Generate n samples of a Poisson random variable with parameter u >= 0.

def n_samples(u, n):

return np.array([ sample(u) for _ in range(n)])

# Compute the mean of samples.

def mean(samples):

n = s = 0

for x in samples:

s += x

n += 1

return s / n

# Compute the variance of samples.

def var(samples):

m = mean(samples)

n = s = 0

for x in samples:

s += (x - m) ** 2

n += 1

return s / (n - 1)

if __name__ == "__main__":

# Seed the random generator (system time is used by default).

random.seed()

samples = n_samples(5, 5000)

u = mean(samples)

s = var(samples)

print("mean =", format(u, "g"))

print("% diff =", format(abs(u - 5) / 5 * 100, "g"))

print("variance =", format(s, "g"))

print("% diff =", format(abs(s - 5) / 5 * 100, "g"))

Listing 2: poisson.py
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#!/usr/bin/env python

import math

import os

import random

import numpy as np

import exponential

import poisson

# Seed the rng.

random.seed()

# Create variables to count the occurrences of each event

# we’re asked to estimate the probability of.

count_n = 0

count_tn = 0

count_m = 0

count_tm = 0

count_nm = 0

count_tnm = 0

count_t = 0

NUM_SAMPLES = 1_000_000

ts = []

# Generate NUM_SAMPLES samples of random variable T.

for _ in range(NUM_SAMPLES):

n = poisson.sample (5)

m = t = 0

count_ms_gte_1 = 0

for _ in range(n):

m = poisson.sample (2)

# Count ms >=1. Later , if this count == n,

# then for this sample all ms >=1.

if m >= 1:

count_ms_gte_1 += 1

for _ in range(m):

t += exponential.sample (0.5)

ts.append(t)

# Count all {T<=20}

if t <= 20:

count_t += 1

# Count {T>20 and N>=5}

if n >= 5:

count_n += 1

if t > 20:

count_tn += 1

# Count {T>20 and all Ms >=1}

if count_ms_gte_1 == n:

count_m += 1

if t > 20:

count_tm += 1

# Count {T>20 and N>=5 and all Ms >=1}

if n >= 5 and count_ms_gte_1 == n:

count_nm += 1

if t > 20:

count_tnm += 1

# Divide each count by the number of samples to estimate the

# probability. In the case of conditional probabiliites ,

# NUM_SAMPLES cancels and it suffices to divide the count of

# intersection with the count of the condition.

print("Pr(T<=20) =", format(count_t / NUM_SAMPLES , "g"))

print("Pr(T>=20|N>=5) =", format(count_tn / count_n , "g"))

print("Pr(T>=20|M>=1) =", format(count_tm / count_m , "g"))
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print("Pr(T>=20|N>=5,M>=1) =", format(count_tnm / count_nm , "g"))

print("mean =", format(np.mean(ts), "g"))

print("variance =", format(np.var(ts), "g"))

Listing 3: part3.py
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